A method of fundamental solutions without fictitious boundary
نویسنده
چکیده
This paper proposes a novel meshless boundary method called the singular boundary method (SBM). This method is mathematically simple, easy-to-program, and truly meshless. Like the method of fundamental solutions (MFS), the SBM employs the singular fundamental solution of the governing equation of interest as the interpolation basis function. However, unlike the MFS, the source and collocation points of the SBM coincide on the physical boundary without the requirement of introducing fictitious boundary. In order to avoid the singularity at the origin, this method proposes an inverse interpolation technique to evaluate the singular diagonal elements of the MFS coefficient matrix. The SBM is successfully tested on a benchmark problems, which shows that the method has a rapid convergence rate and is numerically stable. & 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
A smoothness preserving fictitious domain method for elliptic boundary-value problems
We introduce a new fictitious domain method for the solution of second-order elliptic boundary-value problems with Dirichlet or Neumann boundary conditions on domains with C2 boundary. The main advantage of this method is that it extends the solutions smoothly, which leads to better performance by achieving higher accuracy with fewer degrees of freedom. The method is based on a least-squares in...
متن کاملA new boundary meshfree method with distributed sources
A new boundary meshfree method, to be called the boundary distributed source (BDS) method, is presented in this paper that is truly meshfree and easy to implement. The method is based on the same concept in the well-known method of fundamental solutions (MFS). However, in the BDS method the source points and collocation points coincide and both are placed on the boundary of the problem domain d...
متن کاملSaint-Venant torsion of non-homogeneous anisotropic bars
The BEM is applied to the solution of the torsion problem of non-homogeneous anisotropic non-circular prismatic bars. The problem is formulated in terms of the warping function. This formulation leads to a second order partial differential equation with variable coefficients, subjected to a generalized Neumann type boundary condition. The problem is solved using the Analog Equation Method (AEM)...
متن کاملA Modified Method of Fundamental Solutions for Potential Flow Problems
This chapter describes an application of the recently proposed Modified Method of Fundamental Solutions (MMFS) to the potential flow problems. The solution in two dimensional Cartesian coordinates is represented in terms of the fundamental solution of the Laplace equation together with the first order polynomial augmentation. The collocation is used for determination of the expansion coefficien...
متن کاملAn Enhanced Fictitious Time Integration Method for Non-Linear Algebraic Equations With Multiple Solutions: Boundary Layer, Boundary Value and Eigenvalue Problems
When problems in engineering and science are discretized, algebraic equations appear naturally. In a recent paper by Liu and Atluri, non-linear algebraic equations (NAEs) were transformed into a nonlinear system of ODEs, which were then integrated by a method labelled as the Fictitious Time Integration Method (FTIM). In this paper, the FTIM is enhanced, by using the concept of a repellor in the...
متن کامل